THE HARDEST MATH PROBLEM CHALLENGE 2 ANSWER KEY - GRADE 6

Although the problem has one correct numeric solution, there are multiple pathways students can take to arrive at the answer.

Step 1: I begin by translating some of the most important words into an equation.
"...the average number of colony collapses due to pesticides from 2007-2012 compared to the average from 2002-2007 was $1^{2 / 3}$ times the ratio of the averages of incidents investigated during the same corresponding sets of years."
$\frac{\text { aver. attr. to pesticides } 2007 \text { to } 2012}{\text { aver. attr. to pesticides } 2002 \text { to } 2007}=1 \frac{2}{3} * \frac{\text { aver. incidents inv. } 2007 \text { to } 2012}{\text { aver. incidents inv. } 2002 \text { to } 2007}$
Step 2: Next, I look at the graphs and find the correct numbers to substitute into my equation.
The missing points were said to be "the same" so I assign them each the variable y.

$$
\frac{\left(\frac{2+5+9+14+y+y}{6}\right)}{\left(\frac{5+8+4+1+2+2}{6}\right)}=1 \frac{2}{3} * \frac{\left(\frac{24+39+42+27+18+30}{6}\right)}{\left(\frac{30+27+33+21+15+24}{6}\right)}
$$

Step 3: I simplify and solve, first adding up the numbers in the parentheses, then performing the rest of the calculations.

$$
\begin{array}{cc}
\frac{\left(\frac{30+2 y}{6}\right)}{\left(\frac{22}{6}\right)}=1 \frac{2}{3} * \frac{\left(\frac{180}{6}\right)}{\left(\frac{150}{6}\right)} & \left(\frac{30+2 y}{6}\right) *\left(\frac{6}{22}\right)=\frac{5}{3} * \frac{30}{25} \\
\frac{6(30+2 y)}{132}=\frac{5}{3} * \frac{6}{5} & 1\left(180+12 y=\frac{2}{1}\right. \\
\frac{180+12 y}{132}=2 & 180+12 y=264 \\
& 12 y=84 \\
& y=7
\end{array}
$$

Now I know the missing numbers. Each one is 7!
Step 4: I find the total number of bee colony collapses, for 2002-2012, by adding up all the numbers in that set.

$$
\begin{gathered}
\text { Total }=5+8+4+1+2+2+5+9+14+7+7 \\
\text { Total }=64
\end{gathered}
$$

Answer: The total number of bee colony collapses in County A, North Dakota from 2002-2012 was 64.

THE HARDEST MATH PROBLEM CHALLENGE 2 ANSWER KEY - GRADE 7

Although the problem has one correct numeric solution, there are multiple pathways students can take to arrive at the answer.

Step 1: I begin by calculating the cost of one bottle of each product.
Each bottle contains 64 oz . I will convert gallons (the bulk cost given) to ounces to find the per-bottle cost.
$1 \mathrm{gal} * \frac{4 \mathrm{qt}}{1 \mathrm{gal}} * \frac{2 \text { pints }}{1 \mathrm{qt}} * \frac{2 \text { cups }}{1 \text { pint }} * \frac{8 \mathrm{oz}}{1 \mathrm{cup}}=128 \mathrm{oz} . \quad$ One gallon $=128 \mathrm{oz}$. Each bottle is $1 / 2$ gallon

Shipping Cost
Cost of 1 bottle
MintMix: $\frac{\$ 34.29}{1 \mathrm{qt}} * \frac{4 \mathrm{qt}}{1 \mathrm{gal}} * \frac{1 \mathrm{gal}}{128 \mathrm{oz}} * \frac{64 \mathrm{oz}}{1 \frac{\mathrm{bottl}}{}}=\frac{\$ 68.58}{1 \text { bottle }}$
ZenEarthinol: $\frac{\$ 88.50}{1 \mathrm{gal}} * \frac{1 \mathrm{gal}}{128 \mathrm{oz}} * \frac{64 \mathrm{oz}}{1 \frac{\text { bottle }}{}=\frac{\$ 44.25}{1 \text { bottle }}, ~\left(\frac{10}{}\right)}$
Mito-Down: $\frac{\$ 130.60}{2.5 \mathrm{gal}} * \frac{1 \mathrm{gal}}{128 \mathrm{oz}} * \frac{64 \mathrm{oz}}{1 \frac{\mathrm{bottl}}{}}=\frac{\$ 26.12}{1 \text { bottle }}$

Garden+: $\frac{\$ 75.16}{1 \mathrm{gal}} * \frac{1 \mathrm{gal}}{128 \mathrm{oz}} * \frac{64 \mathrm{oz}}{1 \frac{\mathrm{bottl}}{}}=\frac{\$ 37.58}{1 \text { bottle }}$
NoPest: $\quad \frac{\$ 223}{2 \mathrm{gal}} * \frac{1 \mathrm{gal}}{128 \mathrm{oz}} * \frac{64 \mathrm{oz}}{1 \frac{\mathrm{bottle}}{}=\frac{\$ 55.75}{1 \text { bottle }}}$
\$1.15
\$2.50
\$1.75
$(0.05)(\$ 41.60)=$
$\$ 2.08$

Free
$(\$ 0.05)(64)=$
$\$ 3.20$
$\$ 68.58+\$ 1.15=\$ 69.73$
$\$ 44.25+\$ 2.50=\$ 46.75$
$\$ 26.12+\$ 1.75=\$ 27.87$

Step 2: Next, I find the combinations of 3 different bottles that have a total cost less than or equal to the budget amount of $\$ 120$.

I consider the most expensive bottle, MintMix, at a price of $\$ 69.73$. I subtract it from the club's budget:

$$
\$ 120.00-\$ 69.73=\$ 50.27
$$

The sum of the two remaining bottles within this set must be less than or equal to $\$ 50.27$ to stay within budget. If I subtract the lowest priced bottle ($\$ 50.27-\$ 27.87=\$ 22.40$), I find there is not enough money left for any of the others to be the third bottle.
So, I eliminate this bottle, MintMix, as being a possibility in the final set of 3 .
I use the same set of steps and reasoning to consider the next most expensive bottle, NoPest, which costs \$58.95.

$$
\$ 120.00-\$ 58.95=\$ 61.05 \quad \$ 61.05-\$ 27.87=\$ 33.18
$$

I cannot get a third bottle for less than or equal to $\$ 33.18$, so I also eliminate NoPest as a possibility, too. (continued on next page)

THE HARDEST MATH PROBLEM CHALLENGE 2 ANSWER KEY - GRADE 7

Although each problem does have a correct numeric solution, there are multiple pathways students can take to arrive at the answer.

(continued from previous page)

There are only 3 possibilities that will give a total less than or equal to the club budget of $\$ 120$.

$$
\begin{array}{ll}
\$ 46.75+\$ 27.87+\$ 43.68=\$ 118.30 & \text { (Zen / Mito / VarroA) } \\
\$ 46.75+\$ 27.87+\$ 37.58=\$ 112.20 & \text { (Zen / Mito / Garden+) } \\
\$ 27.87+\$ 43.68+\$ 37.58=\$ 109.13 & \text { (Mito / VarroA / Garden+) }
\end{array}
$$

Step 3: Now, regarding the two combinations with the same median increase in honey production, I must find the one with the lower cost per ounce.

The median of a data set is the middle value when the data is arranged in ascending order (from low to high). I organize the percent increases in honey production:

Zen/Mito/VarroA	$58 \%, 71 \%, 99 \%$	median $=71 \%$
Zen/Mito/Garden+	$58 \%, 71 \%, 95 \%$	median $=71 \%$
Mito/VarroA/Garden+ $71 \%, 95 \%, 99 \%$	median $=95 \%$	

Since the first two have the same median, I have to find the one that has "the lowest average cost per ounce." To find the average cost per ounce, I will find each product's cost per ounce, then average those 3 unit rates.

$$
\begin{aligned}
& \text { Zen/Mito/VarroA } \frac{\left(\frac{\$ 46.75}{64}\right)+\left(\frac{\$ 27.87}{64}\right)+\left(\frac{\$ 43.68}{64}\right)}{3}=\frac{\$ 1.8484375}{3}=\$ 0.6161458 \ldots \approx \$ 0.62 \\
& \text { Zen/Mito/Garden }+\frac{\left(\frac{\$ 46.75}{64}\right)+\left(\frac{\$ 27.87}{64}\right)+\left(\frac{\$ 37.58}{64}\right)}{3}=\frac{\$ 1.753125}{3}=\$ 0.584375 \approx \$ 0.58
\end{aligned}
$$

I find that the combination of Zen/Mito/Garden+ has the lower unit cost per ounce.
I could also have skipped calculating cost per ounce since there is only 1 bottle that is different in the combinations. One has VarroA and the other Garden+. Since both bottles contain 640 and the Garden+ bottle costs less than the VarroA, I know the average cost per ounce will be less in the combination with Garden+.

Step 4: Looking back at my previous calculations in step 2, I see that the total cost of 1 bottle each of ZenEarthinol, Mito-Down, and Garden+ is \$112.20.

Answer: The 7th graders spent a total of $\mathbf{\$ 1 1 2 . 2 0}$ on bee-friendly pesticides.

THE HARDEST MATH PROBLEM CHALLENGE 2 ANSWER KEY - GRADE 8

Although each problem does have a correct numeric solution, there are multiple pathways students can take to arrive at the answer.

Step 1: I need to find the "total overall profit," so I start with the profit equation.
Profit = Sales - Expenses

Step 2: Next, I set up the equations for sales and expenses.
Let $x=$ number of bottles Let $m=$ cost of making enough concentrate to fill one bottle
Each bottle is sold for $\$ 9.72$, so: Total Sales $=\$ 9.72 x$
Total Expenses consist of variable expenses and fixed costs.
Variable expenses are those that vary according to the number of items made.
Fixed costs are the start-up, or one-time costs.

Total Expenses $=\$ 1.50 x+m x+\$ 146.88$
Step 3: Now, I'll look for the break-even point in my data or graph. This is the point where there is no gain or loss. In other words, sales equal expenses.

On a graph, it's the point where the two rays or lines intersect.
Jade's sketch shows the rays intersecting at 34, so this is the break-even point.
Step 4: I substitute the value of x into my equation to solve for m, the cost of making enough concentrate to fill 1 bottle.

I substitute the break-even point, $x=34$.

> Sales = Expenses

$$
\begin{gathered}
\$ 9.72(34)=\$ 1.50(34)+m(34)+146.88 \\
\$ 330.48=\$ 51+34 m+146.88 \\
\$ 330.48=34 m+\$ 197.88 \\
\$ 132.60=34 m \\
\$ 3.90=m
\end{gathered}
$$

The cost of making just the concentrate is $\$ 3.90 /$ bottle. I have to add in the empty bottle and label, too.
$\$ 3.90+\$ 1.45+\$ 0.05=\$ 5.40$ cost to make 1 complete bottle

THE HARDEST MATH PROBLEM CHALLENGE 2 ANSWER KEY - GRADE 8

Although the problem has one correct numeric solution, there are multiple pathways students can take to arrive at the answer.
(continued from previous page)
Step 5: When profits are greater than $\$ 500$, they will donate 2 bottles for every 15 sold. So, I need to find out how many bottles it takes to get to a profit greater than $\$ 500$.

$$
\begin{gathered}
\text { Profit }>\$ 500 \\
\text { Sales }- \text { Expenses }>\$ 500 \\
\$ 9.72 x-[(\$ 5.40 x+\$ 146.88)]>\$ 500 \\
\$ 9.72 x-\$ 5.40 x-\$ 146.88>\$ 500 \\
\$ 4.32 x-\$ 146.88>\$ 500 \\
\$ 4.32 x>\$ 646.88 \\
x>149.740
\end{gathered}
$$

Starting with the 150th bottle, they need to donate 2 bottles for every 15 bottles sold.
Step 6: I use another equation to find when they reach a total donation of 26 bottles.
I translate the words into an equation: They donate 26 bottles, which equals 2 times the number of times 15 occurs between the milestone of $\mathbf{1 5 0}$ bottles sold and the future milestone of an unknown number of bottles sold, \boldsymbol{y}. While I'm setting up the equation, I also realize that subtracting 150 from y only provides the difference between those numbers (the number of bottles sold AFTER the 150th bottle). I need to account for the first bottle sold in the club's donation plan (the 150th bottle), so I add the +1 below.

$$
\begin{array}{ll}
\text { donations }=2\left(\frac{(y-150)+1}{15}\right) & 26=2\left(\frac{y-149}{15}\right) \\
13=\frac{y-149}{15} \\
195=y-149 \\
344=y
\end{array}
$$

When they've sold the 344th bottle produced, they will have donated 26 bottles to the nursing homes.

$$
\begin{gathered}
\text { Profit = Sales }- \text { Expenses }- \text { Sales of } 26 \text { bottles } \\
\text { Profit }=\$ 9.72(344)-[\$ 5.40(344)+146.88)]-\$ 9.72(26) \\
\text { Profit }=\$ 3,343.68-[\$ 1,857.60+146.88]-\$ 252.72 \\
\text { Profit }=\$ 3,343.68-[\$ 2,004.48]-\$ 252.72 \\
\text { Profit }=\$ 1,339.20-\$ 252.72 \\
\text { Profit }=\$ 1,086.48
\end{gathered}
$$

THE HARDEST MATH PROBLEM CHALLENGE 2 ANSWER KEY - GRADE 8

Although each problem does have a correct numeric solution, there are multiple pathways students can take to arrive at the answer.
(continued from previous page)
Step 7: Now, I'm ready to find the profit after selling the 344th bottle. Special note: No money was received for 26 of those bottles. I have to subtract that money in my calculations.

Step 8: I must figure out the profit per ounce of solution (not concentrate).
For each 12 oz bottle of concentrate, you need to mix 7 parts water to 1 part concentrate to get the actual amount of solution it will make. I set up and solve a proportion.

$$
\frac{12 \text { ounces con. }}{n \text { ounces in total }}=\frac{1}{7+1} \quad \frac{12 \text { ounces con. }}{n \text { ounces in total }}=\frac{1}{8} \quad n=12(8) \quad n=96
$$

Each 1 bottle of concentrate makes 96 ounces of pesticide solution.

$$
\frac{\text { profit }}{\text { ounce }}=\frac{\$ 1,086.48}{344 \text { bottles }} * \frac{1 \text { bottle }}{96 \text { ounces of solution }}=\frac{\$ 0.032899709 \ldots}{1 \text { oz solution }}
$$

Answer: Their overall profit, per ounce of pesticide solution, when 26 bottles have been donated to the nursing homes, is about $\mathbf{\$ 0 . 0 3}$ (or $\mathbf{3}$ cents) per ounce.

